Adaptive Lasso and group-Lasso for functional Poisson regression

نویسندگان

  • Stéphane Ivanoff
  • Franck Picard
  • Vincent Rivoirard
چکیده

High dimensional Poisson regression has become a standard framework for the analysis of massive counts datasets. In this work we estimate the intensity function of the Poisson regression model by using a dictionary approach, which generalizes the classical basis approach, combined with a Lasso or a group-Lasso procedure. Selection depends on penalty weights that need to be calibrated. Standard methodologies developed in the Gaussian framework can not be directly applied to Poisson models due to heteroscedasticity. Here we provide data-driven weights for the Lasso and the group-Lasso derived from concentration inequalities adapted to the Poisson case. We show that the associated Lasso and group-Lasso procedures satisfy fast and slow oracle inequalities. Simulations are used to assess the empirical performance of our procedure, and an original application to the analysis of Next Generation Sequencing data is provided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data

‎Dynamic panel data models include the important part of medicine‎, ‎social and economic studies‎. ‎Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models‎. ‎The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance‎. ‎Recently‎, ‎quantile regression to analyze dynamic pa...

متن کامل

Consistency of the Group Lasso and Multiple Kernel Learning

We consider the least-square regression problem with regularization by a block 1-norm, i.e., a sum of Euclidean norms over spaces of dimensions larger than one. This problem, referred to as the group Lasso, extends the usual regularization by the 1-norm where all spaces have dimension one, where it is commonly referred to as the Lasso. In this paper, we study the asymptotic model consistency of...

متن کامل

Consistent group selection in high-dimensional linear regression.

In regression problems where covariates can be naturally grouped, the group Lasso is an attractive method for variable selection since it respects the grouping structure in the data. We study the selection and estimation properties of the group Lasso in high-dimensional settings when the number of groups exceeds the sample size. We provide sufficient conditions under which the group Lasso selec...

متن کامل

Robust Variable Selection in Functional Linear Models

We consider the problem of selecting functional variables using the L1 regularization in a functional linear regression model with a scalar response and functional predictors in the presence of outliers. Since the LASSO is a special case of the penalized least squares regression with L1-penalty function it suffers from the heavy-tailed errors and/or outliers in data. Recently, the LAD regressio...

متن کامل

Robust Regression through the Huber’s criterion and adaptive lasso penalty

The Huber’s Criterion is a useful method for robust regression. The adaptive least absolute shrinkage and selection operator (lasso) is a popular technique for simultaneous estimation and variable selection. The adaptive weights in the adaptive lasso allow to have the oracle properties. In this paper we propose to combine the Huber’s criterion and adaptive penalty as lasso. This regression tech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016